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Motivation 
— 
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Control or synthesis
System Properties

Control/synthesis 
algorithm φ = AG¬crash ∧ (ℙ(F≤2harr) ≥ 0,9)

No/Yes/How?
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The talk in one slide

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an 
antagonistic environment

Good?

Performance w.r.t. objectives / 
payoffs / preference relations

When are simple strategies sufficient to play optimally?

Simple?

Minimal information for deciding 
the next steps
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Our general approach

[Tho95] On the synthesis of strategies in infinite games (STACS’95). 
[Tho02] Thomas. Infinite games and verification (CAV’02). 
[GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives 
       in Games and Interactions, 2008). 
[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).
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‣ Use graph-based game models (state machines) to represent the 
system and its evolution

‣ Use game theory concepts to express admissible situations 
• Winning strategies 
• (Pareto-)Optimal strategies 
• Nash equilibria 
• Subgame-perfect equilibria 
• …

Our general approach

[Tho95] On the synthesis of strategies in infinite games (STACS’95). 
[Tho02] Thomas. Infinite games and verification (CAV’02). 
[GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives 
       in Games and Interactions, 2008). 
[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).
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Games 
What they often are
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Wide range of applicability

‣ Social science: e.g. social choice theory 
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‣ Political science: e.g. fair division 
‣ Biology: e.g. evolutionary biology 
‣ …

« […] it is a context-free mathematical toolbox. »

[MSZ13] Maschler, Solan, Zamir. Game theory (2013).

+ Computer science

Interaction
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Turn-based games on 
graphs

: player P1

: player P2

1.  chooses the edge P1 (s0, s1)
2.  chooses the edge P2 (s1, s4)
3.  chooses the edge P2 (s4, s2)
4.  chooses the edge P1 (s2, )

s0 → s1 → s4 → s2 →

Players use strategies to play. 
A strategy for  is Pi σi : S*Si → E

𝒢 = (S, s0, S1, S2, E)

s0 → s1 → s4 → s2s0 → s1 → s4s0 → s1s0

EdgesStates
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Objectives for the players

We focus on winning objectives, and write  for W W1
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What does it mean 
to win a game?
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‣ Play  is compatible with  whenever  implies 
. We write .

ρ = s0s1s2… σi sj ∈ Si
(sj, sj+1) = σi(s0s1…sj) Out(σi)

What does it mean 
to win a game?
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s2‣ Strategy σ
‣  has two plays, 

which are both winning
Out(σ)
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Outcomes of a strategy
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⋮

‣ Strategy σ
‣  has infinitely many plays, 

some of them are not winning
Out(σ)
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[Mar75] Martin. Borel determinacy (Annals of Mathematics).
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‣ Play  is compatible with  whenever  implies 
. We write .  

‣  is winning if all plays compatible with  belong to  
 is optimal if it is winning or if the initial state is losing

ρ = s0s1s2… σi sj ∈ Si
(sj, sj+1) = σi(s0s1…sj) Out(σi)

σi σi Wi
σi

What does it mean to win a 
game?

Martin’s determinacy theorem

Turn-based zero-sum games are determined for Borel winning objectives: 
in every game, either  or  has a winning strategy.P1 P2

[Mar75] Martin. Borel determinacy (Annals of Mathematics).
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Relevant questions

φ = Reach( )

‣ Can  win the game, i.e. does  have a winning strategy?P1 P1

‣ Is there an effective (efficient) way of winning?

‣ How complex is it to win?

s0

s3

s2

s4

s1
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Computation of winning 
states in the running example

s0

s3

s2

s4

s1

One state is not winning for  
It is winning for 

P1
P2
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‣ Concurrent games 

‣ Stochastic games and strategies 

• Values 

• Determinacy of Blackwell games 

‣ Partial information

What we do not consider
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Families of strategies
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Families of strategies
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General strategies

‣ May use any information of the past execution 

‣ Information used is therefore potentially infinite 

‣ Not adequate if one targets implementation

σi : S*Si → E
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On the simplest side: 
positional strategies

From  to σi : S*Si → E σi : Si → E
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Example: mean-payoff

[Ohl21] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis).
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‣  maximizes,  minimizesP1 P2
‣ Positional strategies are sufficient to win

Example: mean-payoff

[Ohl21] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis).

s1 s3 s5

s4s2s0

-1

-1

-2
5

0

-2

-4

2
-1 -7

2

8

-4

Value 2Value -1 Value 0.5

MP = lim sup
n

∑i≠n ci

n

W = (MP ≥ 0)

Winning for P1Losing for P1
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Do we need more?
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Examples
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a b
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‣ At each visit to , loop once in  and 
then go to  

‣ Generates the sequence 

s1 s1
s2

s2 s2
s1

(acbc)ω

s0
−5

1 0

« Reach the target with energy level  » 0
FG (EL = 0)

Winning strategy

‣ Loop five times in  
‣ Then go to the target 
‣ Generates the sequence of colors

s0

1 1 1 1 1 − 5 0 0 0...

a

c

These two strategies require only finite memory
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This strategy requires infinite memory, and this is unavoidable
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We focus on finite memory!
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m2

Strategy with memory ℳ

Additional next-move function  

 defines a strategy!

αnext : M × Si → E
(ℳ, αnext)

Not yet a strategy!
σi : S*Si → E

αupd : M × S → M

Chaotic* memory

* Terminology by Kopczyński

Remark: memoryless strategies are -strategies, where  isℳtriv ℳtriv
m1C
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memory

m1
a

b

a

b
cc m2ℳ

This skeleton is sufficient for winning 
Büchi Büchi       (in any arena)W = (a) ∧ (b)

αnext : M × S1 → E
(m1, s2) ↦ (s2, b, s2)
(m2, s2) ↦ (s2, a, s1)
(m⋆, s3) ↦ (s3, b, s1)
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b
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memory

m1
a

b

a

b
cc m2ℳ

This skeleton is sufficient for winning 
Büchi Büchi       (in any arena)W = (a) ∧ (b)

s2

c

b
a

s3

s1

a

b c

b
αnext : M × S1 → E

(m1, s2) ↦ (s2, c, s3)
(m2, s2) ↦ (s2, a, s1)
(m⋆, s3) ↦ (s3, b, s1)b

a
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Example of chromatic 
memory

m1
a

b

a

b
cc m2ℳ

This skeleton is sufficient for winning 
Büchi Büchi       (in any arena)W = (a) ∧ (b)

s2

c

b
a

s3

s1

a

b c

b
αnext : M × S1 → E

(m1, s2) ↦ (s2, c, s3)
(m2, s2) ↦ (s2, a, s1)
(m⋆, s3) ↦ (s3, b, s1)b

a
Playing with memory  is like playing memoryless 

in the product arena
ℳ
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‣ Let  be an objective and W i ∈ {1,2}

‣ A skeleton  suffices to win for  (resp. ) for  if  (resp. ) 
has an optimal* strategy based on  in any game  (resp. 

)

ℳ P1 P2 W P1 P2
ℳ (𝒜, W )

(𝒜, Wc)

‣  is -determined if  suffices to win for both players for W ℳ ℳ W
‣ Memoryless determined = -determinedℳtriv
‣ Finite-memory determined =  s.t. -determined∃ℳ ℳ
‣  is half-positional =  suffices to play optimally for  for W ℳtriv P1 W

A zoology of notions

 in finite arenas 
in one-player arenas

 finite 
one-player

* That is, it is winning whenever it is possible to win
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‣ Chromatic memory: the skeleton is based on colors 

‣ Arena-independent memory: the same memory skeleton is used in all 
arenas (of the designed class)

Warning

-determinacy requiresℳ



Winning strategy

‣ Loop five times in  
‣ Then go to the target 
‣ Generates the sequence of colors

s0

1 1 1 1 1 − 5 0 0 0...

Winning strategy

‣ At each visit to , loop once in  and 
then go to  

‣ At each visit to , loop once in  and 
then go to  

‣ Generates the sequence 

s1 s1
s2

s2 s2
s1

(acbc)ω
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Examples

s2s1

c

b

« See infinitely often both  and  » 
Büchi Büchi

a b
(a) ∧ (b)

s0
−5

1 0

« Reach the target with energy level  » 0
FG (EL = 0)

a

c

These two strategies require only finite memory
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then go to  

‣ Generates the sequence 

s1 s1
s2

s2 s2
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(acbc)ω
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Examples

s2s1

c

b

« See infinitely often both  and  » 
Büchi Büchi

a b
(a) ∧ (b)

s0
−5

1 0

« Reach the target with energy level  » 0
FG (EL = 0)

a

c

These two strategies require only finite memory

There is an arena-independent 
memory based on a skeleton

The memory has to be arena-
dependent
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Our goal

Memoryless / finite-memory determinacy

Is it the case that memoryless (resp. finite-memory) strategies suffice 
to win when winning strategies exist?

Understand well low-memory specifications

‣ Finite vs infinite games
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Characterizing positional and 
chromatic finite-memory determinacy 

in finite games
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A fundamental reference: 
[GZ05]

Sufficient conditions

‣ Sufficient conditions to guarantee memoryless optimal strategies 
for both players [GZ04,AR17] 

‣ Sufficient conditions to guarantee half-positional optimal strategies 
[Kop06,Gim07,GK14]

[GZ05] Gimbert, Zielonka. Games Where You Can Play Optimally Without Any Memory (CONCUR’05).
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A fundamental reference: 
[GZ05]

Sufficient conditions

‣ Sufficient conditions to guarantee memoryless optimal strategies 
for both players [GZ04,AR17] 

‣ Sufficient conditions to guarantee half-positional optimal strategies 
[Kop06,Gim07,GK14]

‣ Characterization of winning objectives ensuring memoryless 
determinacy in finite games 

‣ Fundamental reference: [GZ05]

[GZ05] Gimbert, Zielonka. Games Where You Can Play Optimally Without Any Memory (CONCUR’05).
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‣ Let  be an objectiveW ⊆ Cω

‣  is monotone whenever: 
 
 
 

W

‣  is selective whenever:W

Monotony and selectivity

∈ W ⇒
∈ W
∈ W

∈ W

or

or

⇒
∈ W

∉ Wor∉ W
∈ W

and
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The two following assertions are equivalent: 
1.  is memoryless-determined in finite arenas; 
2. Both  and  are monotone and selective.

W
W Wc

Characterization - One-player games

The two following assertions are equivalent: 
1.  is memoryless-determined in finite -arenas; 

2.  is monotone and selective.

W P1
W

Let  be an objectiveW
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Why? Proof hint (2)

Assume  is monotone 
and selective.

W

No memory required at !t

The case of one-player 
arenas
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Applications

Lifting theorem

Memoryless strategies suffice for  for  ( ) in finite -arenas 

 is memoryless-determined in finite arenas

W Pi i = 1,2 Pi

W

Very powerful and extremely useful in practice 

‣ Easy to analyse the one-player case (graph reasoning) 
• Mean-payoff, average-energy [BMRLL15] 

‣ Lift to two-player games via the theorem

⇒

[BMRLL15] Bouyer, Markey, Randour, Larsen, Laursen. Average-energy games (GandALF’15).
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‣ Reachability, safety: 
• Monotone (though not prefix-independent) 
• Selective 

‣ Parity, mean-payoff: 
• Prefix-independent hence monotone 
• Selective 

‣ Average-energy games [BMRLL15] 
• Lifting theorem!!

Discussion of examples

Monotony

Selectivity

[BMRLL15] Bouyer, Markey, Randour, Larsen, Laursen. Average-energy games (GandALF’15).

⇒
∈ W

∉ W∉ W

∈ W
orand

∈ W ⇒

∈ W

∈ W

∈ W

or
or
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‣ No, in general

‣ Consider the objective  defined by 

 or 

W

lim inf
n

n

∑
i=1

ci = + ∞ ∃∞n s.t.
n

∑
i=1

ci = 0

• Optimal finite-memory strategies in one-player games
• But not in two-player games!!

Can we lift [GZ05] to finite 
memory?

 wins but requires infinite memoryP1

−1

+1

+1−1



 with  and ℳ = (M, minit, αupd) minit ∈ M αupd : M × C → M
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Chromatic memory

Memory skeleton

m1
a

b

a

b

m2

Strategy with memory ℳ

Additional next-move function  

 defines a strategy!

αnext : M × Si → E
(ℳ, αnext)

Not yet a strategy!
σi : S*Si → E

Remark: memoryless strategies are -strategies, where  isℳtriv ℳtriv
m1C
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‣ Let  be a winning objective and  be a memory skeletonW ℳ

‣  is -monotone whenever: 
 
 
 

W ℳ

‣  is -selective whenever:W ℳ

44

Adding memory

or
∉ W

∈ W∈ W

∉ W
and ⇒

∈ W ⇒
or

or

∈ W

∈ W

∈ W
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Two characterizations

Characterization - Two-player games

The two following assertions are equivalent: 
1.  is -determined in finite arenas; 
2. Both  and  are -monotone and -selective.

W ℳ
W Wc ℳ ℳ

Characterization - One-player games

The two following assertions are equivalent: 
1.  is -determined in finite -arenas; 

2.  is -monotone and -selective.

W ℳ P1
W ℳ ℳ

Let  be a winning objective and  be a memory skeletonW ℳ

 We recover [GZ05] with → ℳ = ℳtriv
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Technical tool: 
Memory-covered arenas

If the arena has enough information from , 
then memoryless strategies will be sufficient

ℳ

Covered arenas = same properties as product arenas

m1
a

b

a

b

m2
cc

s2s1

b

s0
a

a

a

cb

Hence one can apply a [GZ05]-like 
reasoning to -covered arenasℳ



47

Applications

Lifting theorem

Strategies based on  suffice for  for  in finite -arenas 

 is -determined in finite arenas

ℳi W Pi Pi
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Applications

Lifting theorem

Strategies based on  suffice for  for  in finite -arenas 

 is -determined in finite arenas

ℳi W Pi Pi

W (ℳ1 ⊗ ℳ2)

Very powerful and extremely useful in practice 
⇒

‣ Easy to analyse the one-player case (graph analysis) 

• Conjunction of -regular objectives 
‣ Lift to two-player games via the theorem

ω
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Example of application

ℳ Cm1
a a m2C∖{ }‣  is not -monotoneW ℳtriv

‣  is -monotone 
but not -selective
W ℳ
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 = Reach( )  Reach( )W a ∧ b
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Example of application

ℳ

ℳ′ 

Cm1
a a m2C∖{ }

CC∖{ , } m′ 1
a a m′ 2

b b,

‣  is not -monotoneW ℳtriv

‣  is -monotone 
but not -selective
W ℳ

ℳ

‣  is -selectiveW ℳ′ 

 = Reach( )  Reach( )W a ∧ b
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Example of application

ℳ

ℳ′ 

Cm1
a a m2C∖{ }

CC∖{ , } m′ 1
a a m′ 2

b b,

‣  is not -monotoneW ℳtriv

‣  is -monotone 
but not -selective
W ℳ

ℳ

‣  is -selectiveW ℳ′ 

‣  is -monotone and -selective 

‣  is -monotone and -selective

W ℳ ℳ′ 

Wc ℳ ℳtriv

 = Reach( )  Reach( )W a ∧ b
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Example of application

ℳ

ℳ′ 

Cm1
a a m2C∖{ }

CC∖{ , } m′ 1
a a m′ 2

b b,

‣  is not -monotoneW ℳtriv

‣  is -monotone 
but not -selective
W ℳ

ℳ

‣  is -selectiveW ℳ′ 

‣  is -monotone and -selective 

‣  is -monotone and -selective

W ℳ ℳ′ 

Wc ℳ ℳtriv

 Memory  is sufficient for both players in all finite games→ ℳ ⊗ ℳ′ 

 = Reach( )  Reach( )W a ∧ b

CC∖{ , }a ab

b a
ℳ ⊗ ℳ′ 



49

Partial conclusion

Finite games



49

‣ Complete characterization of winning objectives (and even preference 
relations) that ensure (chromatic) finite-memory determinacy (for both 
players)

Partial conclusion

Finite games



49

‣ Complete characterization of winning objectives (and even preference 
relations) that ensure (chromatic) finite-memory determinacy (for both 
players)

‣ One-to-two-player lifts 
(requires chromatic finite memory determinacy in one-player games for both players; 
 ensures chromatic finite memory determinacy in two-players games for both players)

Partial conclusion

Finite games
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Characterizing positional and 
chromatic finite-memory determinacy 

in infinite games
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‣ Objective for : get non-negative (limsup) mean-payoff 

‣ In finite games: memoryless strategies are sufficient to win 

‣ In infinite games: infinite memory is required to win

P1

The case of mean-payoff

s1 s3s2 si
… …−1 −1 −1 −1

−1 −
1
2

−
1
3

−
1
i
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‣ Let  be a prefix-independent objective.W

A first insight [CN06]

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP’06). 
[Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees 
        (TCS).
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Characterization - Two-player games

The two following assertions are equivalent: 
1. Positional optimal strategies are sufficient for  in all (infinite) games 

for both players; 
2.  is a parity condition 

That is, there are  and  such that

W

W
n ∈ ℕ γ : C → {0,1,…, n}

W = {c1c2… ∈ Cω ∣ lim sup
i

γ(ci) is even}
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A first insight [CN06]

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP’06). 
[Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees 
        (TCS).

Characterization - Two-player games

The two following assertions are equivalent: 
1. Positional optimal strategies are sufficient for  in all (infinite) games 

for both players; 
2.  is a parity condition 

That is, there are  and  such that

W

W
n ∈ ℕ γ : C → {0,1,…, n}

W = {c1c2… ∈ Cω ∣ lim sup
i

γ(ci) is even}

Limitations
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[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP’06). 
[Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees 
        (TCS).

Characterization - Two-player games

The two following assertions are equivalent: 
1. Positional optimal strategies are sufficient for  in all (infinite) games 

for both players; 
2.  is a parity condition 

That is, there are  and  such that

W

W
n ∈ ℕ γ : C → {0,1,…, n}

W = {c1c2… ∈ Cω ∣ lim sup
i

γ(ci) is even}

Limitationsprefix-independent

Positional
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‣ Let  be a language of finite wordsL ⊆ C*

Some language theory (1)

Right congruence

‣Given , x, y ∈ C*

x ∼L y ⇔ ∀z ∈ C*, (x ⋅ z ∈ L ⇔ y ⋅ z ∈ L)
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‣ Let  be a language of finite wordsL ⊆ C*

Some language theory (1)

Right congruence

‣Given , x, y ∈ C*

x ∼L y ⇔ ∀z ∈ C*, (x ⋅ z ∈ L ⇔ y ⋅ z ∈ L)
Myhill-Nerode Theorem

‣  is regular if and only if  has finite index; 

• There is an automaton whose states are classes of , which 
recognizes .

L ∼L

∼L
L
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‣ Let  be a language of infinite wordsW ⊆ Cω

Some language theory (2)

Right congruence

‣Given , x, y ∈ C*

x ∼W y ⇔ ∀z ∈ Cω, (x ⋅ z ∈ W ⇔ y ⋅ z ∈ W)
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‣ Let  be a language of infinite wordsW ⊆ Cω

Some language theory (2)

Right congruence

‣Given , x, y ∈ C*

x ∼W y ⇔ ∀z ∈ Cω, (x ⋅ z ∈ W ⇔ y ⋅ z ∈ W)
Link with -regularity?ω

‣ If  is -regular, then  has finite index; 

• The automaton  based on  is a prefix-classifier; 
‣The converse does not hold (e.g. all prefix-independent languages are 

such that  has only one element).

W ω ∼W

ℳW ∼W

∼W
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‣ Let  be an objective.W ⊆ Cω

Characterization [BRV22]

[CN06] Colcombet, Niwiński. On the positional determinacy of edge-labeled games (Theor. Comp. Science). 
[BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy 
        of Games on Infinite Graphs (STACS’22). 
[EJ91] Emerson, Jutla. Tree automata, mu-calculus and determinacy (FoCS’91). 
[Zie98] Zielonka. Infinite games on finitely colored graphs with applications to automata on infinite 
        Trees (TCS)
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‣ Let  be an objective.W ⊆ Cω
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Characterization - Two-player games

 is finite-memory-determined if and only if  is -regular. Moreover, if  is an 
adapted memory skeleton for , then  is recognized by a deterministic parity 
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‣ Let  be an objective.W ⊆ Cω

Characterization [BRV22]

Characterization - Two-player games

 is finite-memory-determined if and only if  is -regular. Moreover, if  is an 
adapted memory skeleton for , then  is recognized by a deterministic parity 
automaton built on top of .

W W ω ℳ
W W

ℳ ⊗ ℳW

[CN06] Colcombet, Niwiński. On the positional determinacy of edge-labeled games (Theor. Comp. Science). 
[BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy 
        of Games on Infinite Graphs (STACS’22). 
[EJ91] Emerson, Jutla. Tree automata, mu-calculus and determinacy (FoCS’91). 
[Zie98] Zielonka. Infinite games on finitely colored graphs with applications to automata on infinite 
        Trees (TCS)

 Generalizes [CN06] where both  and  are trivial→ ℳ ℳW

‣ The proof of  is given by [EJ91,Zie98]⇐
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‣  is finite (which implies that  is -prefix-independent); 

‣  is -cycle-consistent: after a finite word , if  are winning cycles of 
 (after ), then   is winning; Idem for losing cycles 

  is -prefix-independent and -cycle-consistent 

 Hence  can be recognized by a DPA built on top of  
(relies on ordering cycles according to how good they are for winning)

ℳW W ℳW

W ℳ u (wi)i
ℳ u uw1w2w3⋯

→ W (ℳ ⊗ ℳW) (ℳ ⊗ ℳW)

→ W ℳ ⊗ ℳW

Proof idea for ⇒

Assume  is -determined. Then:W ℳ

Difficult part of the proof
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Examples

C

C a
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b

C

Prefix classifier ℳWObjective W

Parity objective

 C = {a, b}
W = C*(ab)ω b

Memory ℳ

57
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a a C C = {a, b}
W = b*ab*aCω
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Corollary

Lifting theorem

If  and  are finite-memory-determined in one-player infinite 
games, then  and  are finite-memory-determined in two-player 
infinite games.

W Wc

W Wc
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Corollary

Lifting theorem

If  and  are finite-memory-determined in one-player infinite 
games, then  and  are finite-memory-determined in two-player 
infinite games.

W Wc

W Wc

Very powerful and extremely useful in practice 

‣ Easier to analyse the one-player case (graph reasoning) 
‣ Lift to two-player games via the theorem
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Some consequences
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‣ Mean-payoff  is not -regular (even though it is memoryless 
determined in finite games)

≥ 0 ω
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‣ Mean-payoff  is not -regular (even though it is memoryless 
determined in finite games)

≥ 0 ω

‣ Some discounted objectives are -regular: 
The set of infinite words over  satisfying  

 is the set of infinite words accepted by the DBA below:

ω
C = {−2, − 1,0,1,2}

𝖣𝖲≥0
1
2

Some consequences
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‣ Mean-payoff  is not -regular (even though it is memoryless 
determined in finite games)

≥ 0 ω

‣ Some discounted objectives are -regular: 
The set of infinite words over  satisfying  

 is the set of infinite words accepted by the DBA below:

ω
C = {−2, − 1,0,1,2}

𝖣𝖲≥0
1
2

Some consequences

C 0 2 ⊤−2−4⊥ C
C∖{2} 0

01
12

2

−2

−2−2, − 1

2

−1

−1

0,1,2
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Infinite games
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finite-memory determinacy in infinite games = -regularω
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‣ One-to-two-player lift 
(requires chromatic finite memory determinacy in one-player games for both players; 
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‣ Complete characterization of winning objectives that ensure chromatic 
finite-memory determinacy in infinite games = -regularω

‣ One-to-two-player lift 
(requires chromatic finite memory determinacy in one-player games for both players; 
 ensures chromatic finite memory determinacy in two-players games for both players)

‣ Further questions: 
• Different results when assuming finite branching?

Partial conclusion

Infinite games
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Going further?
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‣ So far, nice general characterizations
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What more?

‣ So far, nice general characterizations

‣ However: 
• Memory bounds are not tight in general 
• Makes assumptions on the memory for the two players 

 Precise memory of the two players for -regular objectives? 
      (we will see it is non-trivial in general)
→ ω
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Example

C

b
a

a
W = (b*a)ω ∪ C*aaCω

1

2

b

2

2

2

• Smallest DPA  recognizing  

• The prefix classifier  has the same structure 

𝒜W W
ℳW

qϵ qa qaa

‣ The two players can play optimally with a memory structure based on 𝒜W
‣ The memory required stands between one state (memoryless) and three 

states, for both players

•  is half-positional:  requires only memoryless strategies to win W P1 W
•  requires just two states of memory:  and P2 qϵ qa
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‣  ℱ ⊆ 2C

Wℱ = {w ∈ Cω ∣ {c ∈ C ∣ ∃∞i s.t. wi = c} ∈ ℱ}

The example of Muller 
conditions

[Cas22] Casares. On the minimisation of transition-based Rabin automata and the chromatic memory  
        requirements of Muller condition (CSL’22)
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‣  ℱ ⊆ 2C

Wℱ = {w ∈ Cω ∣ {c ∈ C ∣ ∃∞i s.t. wi = c} ∈ ℱ}

The example of Muller 
conditions

[Cas22] Casares. On the minimisation of transition-based Rabin automata and the chromatic memory  
        requirements of Muller condition (CSL’22)

Chromatic memory for Wℱ

 A memory structure  suffices for  for  if and only if  is 
recognized by a deterministic Rabin automaton built on top of  
[Cas22]. It is NP-complete to decide whether there is a memory 
structure of size  that is sufficient to win a Muller condition.

ℳ P1 Wℱ Wℱ
ℳ

k
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The special case of objectives 
given by DBA [BCRV22]

[BCRV22] Bouyer, Casares, Randour, Vandenhove. Half-positional objectives recognized by deterministic Büchi 
         automata (CONCUR’22)
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‣  given by a DBA (= Deterministic Büchi automaton)W

The special case of objectives 
given by DBA [BCRV22]

[BCRV22] Bouyer, Casares, Randour, Vandenhove. Half-positional objectives recognized by deterministic Büchi 
         automata (CONCUR’22)
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‣  given by a DBA (= Deterministic Büchi automaton)W
‣ Only their half-positionality has been fully characterized

The special case of objectives 
given by DBA [BCRV22]

[BCRV22] Bouyer, Casares, Randour, Vandenhove. Half-positional objectives recognized by deterministic Büchi 
         automata (CONCUR’22)
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‣  given by a DBA (= Deterministic Büchi automaton)W
‣ Only their half-positionality has been fully characterized

The special case of objectives 
given by DBA [BCRV22]

[BCRV22] Bouyer, Casares, Randour, Vandenhove. Half-positional objectives recognized by deterministic Büchi 
         automata (CONCUR’22)

Half-positionality of  can be decided in PTIMEW

An objective  defined by a DBA is half-positional if and only if: 
1.  is monotone; 
2.  is progress consistent: if  is a progress after , then  is 

winning; 
3.  is recognized by a DBA built on top of its prefix classifier

W
W
W w2 w1 w1wω

2

W
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Regular safety and reachability 
objectives [BFRV22]

W = avoid the rightmost state

Tightest memory to win W

[BFRV22] Bouyer, Fijalkow, Randour, Vandenhove. How to Play Optimally for Regular Objectives? (Submitted)

b
m1 m2 m3

a, c, d a, b, d a, b, c

c

d



c, d a

ab

qϵ

qa

qab

qb

b

a, c, d

b, c, d

qc

qd

qcd

c

b c

d

d

a, b, c

a, b, d

a, b, c, d

66

Regular safety and reachability 
objectives [BFRV22]

W = avoid the rightmost state

Tightest memory to win W

[BFRV22] Bouyer, Fijalkow, Randour, Vandenhove. How to Play Optimally for Regular Objectives? (Submitted)

It is NP-complete to decide whether there is a memory structure of size  
that is sufficient to win a regular safety/reachability objective.
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Double lift

‣ Let  be a regular reachability or safety objectiveW ⊆ Cω
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Double lift

The double-lift theorem

If  suffices to win for  in finite -arenas, then  suffices to win 
for  for  in (infinite) two-player arenas.

ℳ W P1 ℳ
W P1

‣ Let  be a regular reachability or safety objectiveW ⊆ Cω
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Double lift

The double-lift theorem

If  suffices to win for  in finite -arenas, then  suffices to win 
for  for  in (infinite) two-player arenas.

ℳ W P1 ℳ
W P1

‣ Let  be a regular reachability or safety objectiveW ⊆ Cω

Very powerful and extremely useful in practice 

‣ Easy to analyse the one-player finite case (finite graph reasoning) 
‣ Lift to infinite two-player games via the theorem
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‣ Chaotic memory is more difficult to grasp 

‣ In the previous example, only two memory states are sufficient (size of 
the largest antichain) [CFH14]

What about chaotic 
memory?

c, d a
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qϵ

qa

qab

qb
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a, c, d
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qc
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qcd
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[CFH14] Colcombet, Fijalkow, Horn. Playing safe (FSTTCS’14)
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Conclusion
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‣ Understand chromatic finite-memory determined objectives
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• Preliminary results, but no general understanding 
• Half-positionality

ω

‣ Chaotic memory 
• Link with goof-for-game automata [CCL22] 
• Universal graphs [Ohl22]

What you can bring home

Quite active area of research

[CCL22] Casares, Colcombet, Lehtinen.On the size of good-for-game Rabin automata and its link with the 
        memory in Muller games (ICALP’22) 
[Ohl22] Ohlmann. Characterizing positionality in games of infinite duration over infinite graphs (LICS’22)


