

école —— normale —— supérieure —— paris — saclay ——

1

The true colors of memory: A tour of chromatic-memory strategies in zero-sum games on graphs

Patricia Bouyer

Laboratoire Méthodes Formelles Université Paris-Saclay, CNRS, ENS Paris-Saclay France

Line of works developed together with Mickael Randour and Pierre Vandenhove. Some works are co-authors with other people: Antonio Casares, Nathanaël Fijalkow, Stéphane Le Roux, Youssouf Oualhadj.

Motivation

The setting

System

System

System

System

System

System

 $\sqrt[n]{}$

System

 $\sqrt[n]{}$

Model-checking algorithm

$$\varphi = \mathbf{AG} \neg \operatorname{crash} \land \left(\mathbb{P}(\mathbf{F}_{\leq 2h} \operatorname{arr}) \geq 0, 9 \right)$$

System

Properties

 \checkmark

Control or synthesis

System

Properties

 \checkmark

No/Yes/How?

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Simple?

Minimal information for deciding the next steps

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Simple?

Minimal information for deciding the next steps

When are simple strategies sufficient to play optimally?

Our general approach

[Tho95] On the synthesis of strategies in infinite games (STACS'95).

[Tho02] Thomas. Infinite games and verification (CAV'02).

[GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives in Games and Interactions, 2008).

[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).

Our general approach

 Use graph-based game models (state machines) to represent the system and its evolution

[Tho95] On the synthesis of strategies in infinite games (STACS'95).

[Tho02] Thomas. Infinite games and verification (CAV'02).

[GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives in Games and Interactions, 2008).

[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).

Our general approach

- Use graph-based game models (state machines) to represent the system and its evolution
- Use **game theory concepts** to express admissible situations
 - Winning strategies
 - (Pareto-)Optimal strategies
 - Nash equilibria
 - Subgame-perfect equilibria
 - ...

[Tho95] On the synthesis of strategies in infinite games (STACS'95).

[Tho02] Thomas. Infinite games and verification (CAV'02).

[[]GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives in Games and Interactions, 2008).

[[]BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).

Games What they often are

Interaction

 Model and analyze (using math. tools) situations of interactive decision making

Wide range of applicability

« [...] it is a context-free mathematical toolbox. »

- Social science: e.g. social choice theory
- Theoretical economics: e.g. models of markets, auctions
- Political science: e.g. fair division
- Biology: e.g. evolutionary biology
- ...

Wide range of applicability

« [...] it is a context-free mathematical toolbox. »

- Social science: e.g. social choice theory
- Theoretical economics: e.g. models of markets, auctions
- Political science: e.g. fair division
- Biology: e.g. evolutionary biology

• ...

[MSZ13] Maschler, Solan, Zamir. Game theory (2013).

+ Computer science

*s*₀

$$s_0 \rightarrow s_2$$

1. P_1 chooses the edge (s_0, s_1)

$$s_0 \rightarrow s_1 \rightarrow s_4$$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)

$$s_0 \rightarrow s_1 \rightarrow s_4 \rightarrow s_2$$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)
- 4. P_1 chooses the edge (s_2, \bigcirc)

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)
- 4. P_1 chooses the edge (s_2, \bigcirc)

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)
- 4. P_1 chooses the edge (s_2, \bigcirc)

Players use **strategies** to play. A strategy for P_i is $\sigma_i : S^*S_i \to E$

 $C = \{ a, b \}$ set of colors $E \subseteq S \times C \times S$

 $C = \{ a, b \}$ set of colors $E \subseteq S \times C \times S$

• Winning objective for $P_i: W_i \subseteq C^{\omega}$, e.g. $W_1 = C^* \cdot b \cdot C^{\omega}$

 $C = \{ a, b \}$ set of colors $E \subseteq S \times C \times S$

- Winning objective for $P_i: W_i \subseteq C^{\omega}$, e.g. $W_1 = C^* \cdot b \cdot C^{\omega}$
- Payoff function: $p_i: C^{\omega} \to \mathbb{R}$, e.g. mean-payoff

 $C = \{ a, b \}$ set of colors $E \subseteq S \times C \times S$

- Winning objective for $P_i: W_i \subseteq C^{\omega}$, e.g. $W_1 = C^* \cdot b \cdot C^{\omega}$
- Payoff function: $p_i: C^{\omega} \to \mathbb{R}$, e.g. mean-payoff
- Preference relation: $\sqsubseteq_i \subseteq C^{\omega} \times C^{\omega}$ (total preorder)

Zero-sum assumption

 $C = \{ a, b \}$ set of colors $E \subseteq S \times C \times S$

• Winning objective for $P_i: W_i \subseteq C^\omega$, e.g. $W_1 = C^* \cdot b \cdot C^\omega$

$$W_2 = W_1^c$$

- Payoff function: $p_i \colon C^{\omega} \to \mathbb{R}$, e.g. mean-payoff
- Preference relation: $\sqsubseteq_i \subseteq C^{\omega} \times C^{\omega}$ (total preorder)

Objectives for the players

Zero-sum assumption

 $C = \{a, b\}$ set of colors $E \subseteq S \times C \times S$

 \blacktriangleright Winning objective for $P_i: W_i \subseteq C^{\omega}$, e.g. $W_1 = C^* \cdot b \cdot C^{\omega}$

We focus on winning objectives, and write W for W_1

• Preference relation: $\sqsubseteq_i \subseteq C^{\omega} \times C^{\omega}$ (total preorder)

 $W_2 = W_1^c$

What does it mean to win a game?

What does it mean to win a game?

► Play $\rho = s_0 s_1 s_2 \dots$ is compatible with σ_i whenever $s_j \in S_i$ implies $(s_j, s_{j+1}) = \sigma_i (s_0 s_1 \dots s_j)$. We write $Out(\sigma_i)$.

► Strategy *σ*

- ▶ Strategy *o*
- ► Out(\sigma) has two plays, which are both winning

► Strategy *o*

- ► Strategy σ
- $Out(\sigma)$ has infinitely many plays, some of them are not winning

What does it mean to win a game?

- ► Play $\rho = s_0 s_1 s_2 \dots$ is compatible with σ_i whenever $s_j \in S_i$ implies $(s_j, s_{j+1}) = \sigma_i (s_0 s_1 \dots s_j)$. We write $Out(\sigma_i)$.
- σ_i is **winning** if all plays compatible with σ_i belong to W_i σ_i is **optimal** if it is winning or if the initial state is losing

What does it mean to win a game?

- ► Play $\rho = s_0 s_1 s_2 \dots$ is compatible with σ_i whenever $s_j \in S_i$ implies $(s_j, s_{j+1}) = \sigma_i (s_0 s_1 \dots s_j)$. We write $Out(\sigma_i)$.
- σ_i is **winning** if all plays compatible with σ_i belong to W_i σ_i is **optimal** if it is winning or if the initial state is losing

Martin's determinacy theorem

Turn-based zero-sum games are determined for Borel winning objectives: in every game, either P_1 or P_2 has a winning strategy.

• Can P_1 win the game, i.e. does P_1 have a winning strategy?

• Can P_1 win the game, i.e. does P_1 have a winning strategy?

► Is there an effective (efficient) way of winning?

• Can P_1 win the game, i.e. does P_1 have a winning strategy?

- ► Is there an effective (efficient) way of winning?
- How complex is it to win?

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_1 starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_1 starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_1 starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_1 starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_1 starts

All states are winning for P_1

One state is not winning for P_1 It is winning for P_2

What we do not consider

- Concurrent games
- Stochastic games and strategies
 - Values
 - Determinacy of Blackwell games
- Partial information

Families of strategies

Families of strategies

General strategies

$$\sigma_i: S^*S_i \to E$$

- May use any information of the past execution
- Information used is therefore potentially infinite
- Not adequate if one targets implementation

From $\sigma_i : S^*S_i \to E$ to $\sigma_i : S_i \to E$

From $\sigma_i: S^*S_i \to E$ to $\sigma_i: S_i \to E$

Positional = memoryless

From $\sigma_i: S^*S_i \to E$ to $\sigma_i: S_i \to E$

- Positional = memoryless
- Reachability, parity, mean-payoff, positive energy, ... \rightarrow positional strategies are sufficient to win

From $\sigma_i: S^*S_i \to E$ to $\sigma_i: S_i \to E$

- Positional = memoryless
- Reachability, parity, mean-payoff, positive energy, ... \rightarrow positional strategies are sufficient to win

Example: mean-payoff

[Ohl21] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis).
• P_1 maximizes, P_2 minimizes

[Ohl21] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis).

- P_1 maximizes, P_2 minimizes
- Positional strategies are sufficient to win

[Ohl21] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis).

- P_1 maximizes, P_2 minimizes
- Positional strategies are sufficient to win

 $\overline{\mathsf{MP}} = \limsup_{n} \frac{\sum_{i \neq n} c_i}{n}$ $W = (\overline{\mathsf{MP}} \ge 0)$

[Ohl21] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis).

- P_1 maximizes, P_2 minimizes
- Positional strategies are sufficient to win

 $\overline{\mathsf{MP}} = \limsup_{n} \frac{\sum_{i \neq n} c_i}{n}$ $W = (\overline{\mathsf{MP}} \ge 0)$

Do we need more?

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

Winning strategy

- At each visit to s₁, loop once in s₁ and then go to s₂
- At each visit to s₂, loop once in s₂ and then go to s₁
- Generates the sequence $(acbc)^{\omega}$

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

Winning strategy

- At each visit to s₁, loop once in s₁ and then go to s₂
- At each visit to s₂, loop once in s₂ and then go to s₁
- Generates the sequence $(acbc)^{\omega}$

 $^{\rm *}$ Reach the target with energy level 0 » $FG~({\rm EL}=0)$

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

Winning strategy

- At each visit to s_1 , loop once in s_1 and then go to s_2
- At each visit to s_2 , loop once in s_2 and then go to s_1
- Generates the sequence $(acbc)^{\omega}$

 $^{\rm *}$ Reach the target with energy level 0 » $FG~({\rm EL}=0)$

Winning strategy

- Loop five times in s_0
- Then go to the target
- ▶ Generates the sequence of colors
 1 1 1 1 1 − 5 0 0 0...

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

Winning strategy

- At each visit to s_1 , loop once in s_1 and then go to s_2
- At each visit to s_2 , loop once in s_2 and then go to s_1
- Generates the sequence $(acbc)^{\omega}$

 $^{\rm *}$ Reach the target with energy level 0 » $FG~({\rm EL}=0)$

Winning strategy

- Loop five times in s_0
- Then go to the target
- Generates the sequence of colors $1 \ 1 \ 1 \ 1 \ 1 \ 5 \ 0 \ 0 \ 0...$

These two strategies require only **finite** memory

Example: multi-dimensional mean-payoff

« Have a (limsup) mean-payoff ≥ 0 on both dimensions » So-called *multi-dimensional mean-payoff*

Example: multi-dimensional mean-payoff

« Have a (limsup) mean-payoff ≥ 0 on both dimensions » So-called *multi-dimensional mean-payoff*

Winning strategy

- After k-th switch between s_1 and s_2 , loop 2k-1 times and then switch back
- Generates the sequence (-1, -1)(-1, +1)(-1, -1)(+1, -1)(+1, -1)(+1, -1)(-1, -1)(-1, -1)(-1, +1)(-1, +1)(-1, +1)(-1, +1)(-1, -1)(-

Example: multi-dimensional mean-payoff

« Have a (limsup) mean-payoff ≥ 0 on both dimensions » So-called *multi-dimensional mean-payoff*

Winning strategy

- After k-th switch between s_1 and s_2 , loop 2k-1 times and then switch back
- Generates the sequence (-1, -1)(-1, +1)(-1, -1)(+1, -1)(+1, -1)(+1, -1)(-1, -1)(-1, -1)(-1, +1)(-1, +1)(-1, +1)(-1, +1)(-1, +1)(-1, -1)(+1

This strategy requires **infinite** memory, and this is unavoidable

We focus on finite memory!

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Not yet a strategy! $\sigma_i: S^*S_i \to E$

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

<u>Remark</u>: memoryless strategies are \mathcal{M}_{triv} -strategies, where \mathcal{M}_{triv} is

Memory skeleton

<u>Remark</u>: memoryless strategies are $\mathcal{M}_{\mathrm{triv}}$ -strategies, where $\mathcal{M}_{\mathrm{triv}}$ is

Example

Example

• Let W be an objective and $i \in \{1,2\}$

- Let W be an objective and $i \in \{1,2\}$
- A skeleton \mathscr{M} suffices to win for P_1 (resp. P_2) for W if P_1 (resp. P_2) has an optimal* strategy based on \mathscr{M} in any game (\mathscr{A}, W) (resp. (\mathscr{A}, W^c))

• Let W be an objective and $i \in \{1,2\}$

in finite arenas in one-player arenas

• A skeleton \mathscr{M} suffices to win for P_1 (resp. P_2) for W if P_1 (resp. P_2) has an optimal* strategy based on \mathscr{M} in any game (\mathscr{A}, W) (resp. (\mathscr{A}, W^c)) finite one-player

• Let W be an objective and $i \in \{1,2\}$

in finite arenas in one-player arenas

- A skeleton \mathscr{M} suffices to win for P_1 (resp. P_2) for W if P_1 (resp. P_2) has an optimal* strategy based on \mathscr{M} in any game (\mathscr{A}, W) (resp. (\mathscr{A}, W^c)) finite one-player
- ${\scriptstyle \bullet } \hspace{0.1 cm} W$ is ${\mathscr M}$ -determined if ${\mathscr M}$ suffices to win for both players for W

* That is, it is winning whenever it is possible to win

• Let W be an objective and $i \in \{1,2\}$

in finite arenas in one-player arenas

- A skeleton \mathscr{M} suffices to win for P_1 (resp. P_2) for W if P_1 (resp. P_2) has an optimal* strategy based on \mathscr{M} in any game (\mathscr{A}, W) (resp. (\mathscr{A}, W^c)) finite one-player
- ${\scriptstyle \blacktriangleright}\ W$ is ${\mathscr M}$ -determined if ${\mathscr M}$ suffices to win for both players for W
- Memoryless determined = \mathcal{M}_{triv} -determined

• Let W be an objective and $i \in \{1,2\}$

in finite arenas in one-player arenas

- A skeleton \mathscr{M} suffices to win for P_1 (resp. P_2) for W if P_1 (resp. P_2) has an optimal* strategy based on \mathscr{M} in any game (\mathscr{A}, W) (resp. (\mathscr{A}, W^c)) finite one-player
- ${\scriptstyle \blacktriangleright}\ W$ is ${\mathscr M}$ -determined if ${\mathscr M}$ suffices to win for both players for W
- Memoryless determined = \mathcal{M}_{triv} -determined
- Finite-memory determined = $\exists \mathcal{M} s.t. \mathcal{M}$ -determined

• Let W be an objective and $i \in \{1,2\}$

in finite arenas in one-player arenas

- A skeleton \mathscr{M} suffices to win for P_1 (resp. P_2) for W if P_1 (resp. P_2) has an optimal* strategy based on \mathscr{M} in any game (\mathscr{A}, W) (resp. (\mathscr{A}, W^c)) finite one-player
- $\bullet \hspace{0.1in} W \hspace{0.5mm} \text{is} \hspace{0.5mm} \mathscr{M} \hspace{0.5mm} \text{-determined if} \hspace{0.5mm} \mathscr{M} \hspace{0.5mm} \text{suffices to win for both players for} \hspace{0.5mm} W$
- Memoryless determined = \mathcal{M}_{triv} -determined
- Finite-memory determined = $\exists \mathcal{M} \text{ s.t. } \mathcal{M}$ -determined
- W is half-positional = $\mathscr{M}_{\mathsf{triv}}$ suffices to play optimally for P_1 for W

* That is, it is winning whenever it is possible to win

M-determinacy requires

- Chromatic memory: the skeleton is based on colors
- Arena-independent memory: the same memory skeleton is used in all arenas (of the designed class)

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

Winning strategy

- At each visit to s_1 , loop once in s_1 and then go to s_2
- At each visit to s_2 , loop once in s_2 and then go to s_1
- Generates the sequence $(acbc)^{\omega}$

 $^{\rm *}$ Reach the target with energy level 0 » $FG~({\rm EL}=0)$

Winning strategy

- Loop five times in s_0
- Then go to the target
- Generates the sequence of colors $1 \ 1 \ 1 \ 1 \ 1 \ -5 \ 0 \ 0 \ 0...$

These two strategies require only **finite** memory

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

Winning strategy

- At each visit to s_1 , loop once in s_1 and then go to s_2
 - There is an arena-independent memory based on a skeleton

• Generates the sequence $(acbc)^{\omega}$

 $^{\rm *}$ Reach the target with energy level 0 » $FG~({\rm EL}=0)$

These two strategies require only **finite** memory

Ind
Understand well low-memory specifications

Understand well low-memory specifications

Memoryless / finite-memory determinacy

Is it the case that memoryless (resp. finite-memory) strategies suffice to win when winning strategies exist?

Understand well low-memory specifications

Memoryless / finite-memory determinacy

Is it the case that memoryless (resp. finite-memory) strategies suffice to win when winning strategies exist?

Understand well low-memory specifications

Memoryless / finite-memory determinacy

Is it the case that memoryless (resp. finite-memory) strategies suffice to win when winning strategies exist?

Finite vs infinite games

Characterizing positional and chromatic finite-memory determinacy in finite games

A fundamental reference: [GZ05]

Sufficient conditions

- Sufficient conditions to guarantee memoryless optimal strategies for both players [GZ04, AR17]
- Sufficient conditions to guarantee half-positional optimal strategies
 [Kop06,Gim07,GK14]

A fundamental reference: [GZ05]

Sufficient conditions

- Sufficient conditions to guarantee memoryless optimal strategies for both players [GZ04, AR17]
- Sufficient conditions to guarantee half-positional optimal strategies
 [Kop06,Gim07,GK14]

- Characterization of winning objectives ensuring memoryless determinacy in finite games
- Fundamental reference: [GZØ5]

• Let $W \subseteq C^{\omega}$ be an objective

- Let $W \subseteq C^{\omega}$ be an objective
- ► W is **monotone** whenever:

- Let $W \subseteq C^{\omega}$ be an objective
- ► W is **monotone** whenever:

► *W* is **selective** whenever:

Two characterizations

Let W be an objective

Characterization - Two-player games

The two following assertions are equivalent:

- 1. W is memoryless-determined in finite arenas;
- 2. Both W and W^c are monotone and selective.

Two characterizations

Let W be an objective

Characterization - Two-player games

The two following assertions are equivalent:

- 1. W is memoryless-determined in finite arenas;
- 2. Both W and W^c are monotone and selective.

Characterization - One-player games

The two following assertions are equivalent:

- 1. W is memoryless-determined in finite P_1 -arenas;
- 2. W is monotone and selective.

Assume all P_1 -games have optimal memoryless strategies.

Assume all P_1 -games have optimal memoryless strategies.

lf 🗾

is winning

Assume all P_1 -games have optimal memoryless strategies.

lf

is winning

Assume all P_1 -games have optimal memoryless strategies.

lf

is winning

Assume all P_1 -games have optimal memoryless strategies.

lf

is winning

is winning

W is selective

Assume W is monotone and selective.

Assume W is monotone and selective.

The case of one-player arenas

E

Assume W is monotone and selective.

The case of one-player arenas

No memory required at *t*!

Two characterizations

Let W be an objective

Characterization - Two-player games

The two following assertions are equivalent:

- 1. W is memoryless-determined in finite arenas;
- 2. Both W and W^c are monotone and selective.

Two characterizations

Let W be an objective

Characterization - Two-player games

The two following assertions are equivalent:

- 1. W is memoryless-determined in finite arenas;
- 2. Both W and W^c are monotone and selective.

Characterization - One-player games

The two following assertions are equivalent:

- 1. W is memoryless-determined in finite P_1 -arenas;
- 2. W is monotone and selective.

Applications

Lifting theorem

Memoryless strategies suffice for W for P_i (i = 1,2) in finite P_i -arenas

 \downarrow

W is memoryless-determined in finite arenas

Applications

Lifting theorem

Memoryless strategies suffice for W for P_i (i = 1,2) in finite P_i -arenas \Downarrow W is memoryless-determined in finite arenas

Very powerful and extremely useful in practice

- Easy to analyse the one-player case (graph reasoning)
 - Mean-payoff, average-energy [BMRLL15]
- Lift to two-player games via the theorem

Discussion of examples

- Reachability, safety:
 - Monotone (though not prefix-independent)
 - Selective
- Parity, mean-payoff:
 - Prefix-independent hence monotone
 - Selective
- Average-energy games [BMRLL15]
 - Lifting theorem!!

► No, in general

- ► No, in general
- Consider the objective W defined by $\liminf_{n} \sum_{i=1}^{n} c_i = +\infty \text{ or } \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$

- ► No, in general
- Consider the objective W defined by $\liminf_{n} \sum_{i=1}^{n} c_i = +\infty \text{ or } \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$
 - Optimal finite-memory strategies in one-player games

- ► No, in general
- Consider the objective W defined by

$$\liminf_{n} \sum_{i=1}^{n} c_i = +\infty \text{ or } \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$$

- Optimal finite-memory strategies in one-player games
- But not in two-player games!!

- ► No, in general
- Consider the objective W defined by

$$\liminf_{n} \sum_{i=1}^{n} c_i = +\infty \text{ or } \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$$

- Optimal finite-memory strategies in one-player games
- But not in two-player games!!

- ► No, in general
- Consider the objective W defined by

$$\liminf_{n} \sum_{i=1}^{n} c_i = +\infty \text{ or } \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$$

- Optimal finite-memory strategies in one-player games
- But not in two-player games!!

 P_1 wins but requires infinite memory

Chromatic memory

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

<u>Remark</u>: memoryless strategies are \mathcal{M}_{triv} -strategies, where \mathcal{M}_{triv} is

 ${\scriptstyle \bullet}\,$ Let W be a winning objective and ${\mathscr M}$ be a memory skeleton

- Let W be a winning objective and \mathscr{M} be a memory skeleton
- ► W is *M*-monotone whenever:

- Let W be a winning objective and \mathscr{M} be a memory skeleton
- ► W is *M*-monotone whenever:

► W is *M*-selective whenever:

Two characterizations

Let W be a winning objective and \mathscr{M} be a memory skeleton

Characterization - Two-player games

The two following assertions are equivalent:

- 1. W is \mathcal{M} -determined in finite arenas;
- 2. Both W and W^c are \mathscr{M} -monotone and \mathscr{M} -selective.

Two characterizations

Let W be a winning objective and \mathscr{M} be a memory skeleton

Characterization - Two-player games

The two following assertions are equivalent:

- 1. W is \mathcal{M} -determined in finite arenas;
- 2. Both W and W^c are \mathscr{M} -monotone and \mathscr{M} -selective.

Characterization - One-player games

The two following assertions are equivalent:

- 1. W is \mathcal{M} -determined in finite P_1 -arenas;
- 2. W is \mathcal{M} -monotone and \mathcal{M} -selective.

Two characterizations

Let W be a winning objective and \mathscr{M} be a memory skeleton

Characterization - Two-player games

The two following assertions are equivalent:

- 1. W is \mathcal{M} -determined in finite arenas;
- 2. Both W and W^c are \mathscr{M} -monotone and \mathscr{M} -selective.

Characterization - One-player games

The two following assertions are equivalent:

- 1. W is \mathcal{M} -determined in finite P_1 -arenas;
- 2. W is \mathscr{M} -monotone and \mathscr{M} -selective.

 \rightarrow We recover [GZ05] with $\mathcal{M} = \mathcal{M}_{\text{triv}}$

If the arena has enough information from \mathscr{M} , then memoryless strategies will be sufficient

Covered arenas = same properties as product arenas

If the arena has enough information from \mathcal{M} , then memoryless strategies will be sufficient

Covered arenas = same properties as product arenas

If the arena has enough information from $\mathscr{M},$ then memoryless strategies will be sufficient

Covered arenas = same properties as product arenas

Hence one can apply a [GZ05]-like reasoning to *M*-covered arenas

46

Applications

Lifting theorem

Strategies based on \mathscr{M}_i suffice for W for P_i in finite P_i -arenas ψ W is $(\mathscr{M}_1 \otimes \mathscr{M}_2)$ -determined in finite arenas

Applications

Lifting theorem

Strategies based on \mathscr{M}_i suffice for W for P_i in finite P_i -arenas ψ W is $(\mathscr{M}_1 \otimes \mathscr{M}_2)$ -determined in finite arenas

Very powerful and extremely useful in practice

- Easy to analyse the one-player case (graph analysis)
 - Conjunction of ω -regular objectives
- Lift to two-player games via the theorem

 $W = \operatorname{Reach}(a) \wedge \operatorname{Reach}(b)$

- $W = \text{Reach}(a) \land \text{Reach}(b)$
- W is not $\mathscr{M}_{\mathsf{triv}}$ -monotone

- $W = \operatorname{Reach}(a) \wedge \operatorname{Reach}(b)$
- W is not \mathcal{M}_{triv} -monotone
- ► W is *M*-monotone but not *M*-selective

- $W = \text{Reach}(a) \land \text{Reach}(b)$
- W is not $\mathscr{M}_{\mathsf{triv}}$ -monotone
- ► W is *M*-monotone but not *M*-selective
- ► W is *M*'-selective

- $W = \operatorname{Reach}(a) \wedge \operatorname{Reach}(b)$
- W is not $\mathscr{M}_{\mathsf{triv}}$ -monotone
- ► W is *M*-monotone but not *M*-selective
- W is \mathscr{M}' -selective

- $\blacktriangleright \ W \text{ is } \mathscr{M} \text{-monotone and } \mathscr{M} \text{-selective}$
- W^c is \mathscr{M} -monotone and $\mathscr{M}_{\mathrm{triv}}$ -selective

- $W = \operatorname{Reach}(a) \wedge \operatorname{Reach}(b)$
- W is not $\mathscr{M}_{\mathsf{triv}}$ -monotone
- ► W is *M*-monotone but not *M*-selective
- W is \mathscr{M}' -selective

- W is \mathscr{M} -monotone and \mathscr{M}' -selective
- W^c is \mathscr{M} -monotone and \mathscr{M}_{triv} -selective

 \rightarrow Memory $\mathscr{M} \otimes \mathscr{M}'$ is sufficient for both players in all finite games

Partial conclusion

Finite games

Partial conclusion

Finite games

 Complete characterization of winning objectives (and even preference relations) that ensure (chromatic) finite-memory determinacy (for both players)

Partial conclusion

Finite games

- Complete characterization of winning objectives (and even preference relations) that ensure (chromatic) finite-memory determinacy (for both players)
- One-to-two-player lifts (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)

Characterizing positional and chromatic finite-memory determinacy in infinite games

The case of mean-payoff

- Objective for P_1 : get non-negative (limsup) mean-payoff
- ► In finite games: **memoryless** strategies are sufficient to win
- ► In infinite games: **infinite memory** is required to win

• Let W be a prefix-independent objective.

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP'06). [Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees (TCS).

• Let W be a prefix-independent objective.

Characterization - Two-player games

The two following assertions are equivalent:

1. Positional optimal strategies are sufficient for W in all (infinite) games for both players;

2. *W* is a parity condition That is, there are $n \in \mathbb{N}$ and $\gamma : C \to \{0, 1, ..., n\}$ such that $W = \{c_1 c_2 \dots \in C^{\omega} \mid \limsup_i \gamma(c_i) \text{ is even}\}$

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP'06). [Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees (TCS).

52

• Let W be a prefix-independent objective.

Limitations

52

Characterization - Two-player games

The two following assertions are equivalent:

1. Positional optimal strategies are sufficient for W in all (infinite) games for both players;

2. *W* is a parity condition That is, there are $n \in \mathbb{N}$ and $\gamma : C \to \{0,1,\ldots,n\}$ such that $W = \{c_1c_2... \in C^{\omega} \mid \limsup \gamma(c_i) \text{ is even}\}$

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP'06). [Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees (TCS).

• Let W be a prefix-independent objective.

Limitations

Characterization - Two-player games

The two following assertions are equivalent:

1. Positional optimal strategies are sufficient for W in all (infinite) games for both players;

2. *W* is a parity condition That is, there are $n \in \mathbb{N}$ and $\gamma : C \to \{0, 1, ..., n\}$ such that $W = \{c_1 c_2 ... \in C^{\omega} \mid \limsup_i \gamma(c_i) \text{ is even}\}$

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP'06). [Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees (TCS).

Some language theory (1)

• Let $L \subseteq C^*$ be a language of finite words

Right congruence

• Given $x, y \in C^*$, $x \sim_L y \Leftrightarrow \forall z \in C^*, (x \cdot z \in L \Leftrightarrow y \cdot z \in L)$

Some language theory (1)

• Let $L \subseteq C^*$ be a language of finite words

Right congruence

• Given $x, y \in C^*$, $x \sim_L y \Leftrightarrow \forall z \in C^*, (x \cdot z \in L \Leftrightarrow y \cdot z \in L)$

Myhill-Nerode Theorem

- L is regular if and only if \sim_L has finite index;
 - There is an automaton whose states are classes of \sim_L , which recognizes L.

Some language theory (2)

• Let $W \subseteq C^{\omega}$ be a language of infinite words

Right congruence

 $\textbf{Given } x, y \in C^*, \\ x \sim_W y \Leftrightarrow \forall z \in C^{\omega}, \left(x \cdot z \in W \Leftrightarrow y \cdot z \in W \right)$

Some language theory (2)

• Let $W \subseteq C^{\omega}$ be a language of infinite words

Right congruence

 $\textbf{Given } x, y \in C^*, \\ x \sim_W y \Leftrightarrow \forall z \in C^{\omega}, \left(x \cdot z \in W \Leftrightarrow y \cdot z \in W \right)$

Link with ω -regularity?

- If W is ω -regular, then \sim_W has finite index;
 - The automaton \mathcal{M}_W based on \thicksim_W is a prefix-classifier;
- The converse does not hold (e.g. all prefix-independent languages are such that \sim_W has only one element).

Characterization [BRV22]

• Let $W \subseteq C^{\omega}$ be an objective.

[CN06] Colcombet, Niwiński. On the positional determinacy of edge-labeled games (Theor. Comp. Science). [BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy

of Games on Infinite Graphs (STACS'22).

[EJ91] Emerson, Jutla. Tree automata, mu-calculus and determinacy (FoCS'91).

[Zie98] Zielonka. Infinite games on finitely colored graphs with applications to automata on infinite Trees (TCS)

Characterization [BRV22]

• Let $W \subseteq C^{\omega}$ be an objective.

Characterization - Two-player games

W is finite-memory-determined if and only if W is ω -regular. Moreover, if \mathcal{M} is an adapted memory skeleton for W, then W is recognized by a deterministic parity automaton built on top of $\mathcal{M} \otimes \mathcal{M}_W$.

[CN06] Colcombet, Niwiński. On the positional determinacy of edge-labeled games (Theor. Comp. Science). [BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs (STACS'22).

[EJ91] Emerson, Jutla. Tree automata, mu-calculus and determinacy (FoCS'91).

[Zie98] Zielonka. Infinite games on finitely colored graphs with applications to automata on infinite Trees (TCS)

Characterization [BRV22]

• Let $W \subseteq C^{\omega}$ be an objective.

Characterization - Two-player games

W is finite-memory-determined if and only if W is ω -regular. Moreover, if \mathcal{M} is an adapted memory skeleton for W, then W is recognized by a deterministic parity automaton built on top of $\mathcal{M} \otimes \mathcal{M}_W$.

 \rightarrow Generalizes [CN06] where both \mathcal{M} and \mathcal{M}_W are trivial

[CN06] Colcombet, Niwiński. On the positional determinacy of edge-labeled games (Theor. Comp. Science). [BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy

of Games on Infinite Graphs (STACS'22).

[EJ91] Emerson, Jutla. Tree automata, mu-calculus and determinacy (FoCS'91).

[Zie98] Zielonka. Infinite games on finitely colored graphs with applications to automata on infinite Trees (TCS)
Characterization [BRV22]

• Let $W \subseteq C^{\omega}$ be an objective.

Characterization - Two-player games

W is finite-memory-determined if and only if W is ω -regular. Moreover, if \mathcal{M} is an adapted memory skeleton for W, then W is recognized by a deterministic parity automaton built on top of $\mathcal{M} \otimes \mathcal{M}_W$.

 \rightarrow Generalizes [CN06] where both \mathcal{M} and \mathcal{M}_W are trivial

► The proof of ⇐ is given by [EJ91, Zie98]

[CN06] Colcombet, Niwiński. On the positional determinacy of edge-labeled games (Theor. Comp. Science).

[BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs (STACS'22).

[EJ91] Emerson, Jutla. Tree automata, mu-calculus and determinacy (FoCS'91).

[Zie98] Zielonka. Infinite games on finitely colored graphs with applications to automata on infinite Trees (TCS)

Proof idea for \Rightarrow

Assume W is \mathcal{M} -determined. Then:

- \mathcal{M}_W is finite (which implies that W is \mathcal{M}_W -prefix-independent);
- W is \mathcal{M} -cycle-consistent: after a finite word u, if $(w_i)_i$ are winning cycles of \mathcal{M} (after u), then $uw_1w_2w_3\cdots$ is winning; Idem for losing cycles
- $\to W \text{ is } (\mathscr{M} \otimes \mathscr{M}_W) \text{-prefix-independent and } (\mathscr{M} \otimes \mathscr{M}_W) \text{-cycle-consistent}$

 \rightarrow Hence W can be recognized by a DPA built on top of $\mathscr{M}\otimes \mathscr{M}_W$ (relies on ordering cycles according to how good they are for winning)

Corollary

Lifting theorem

If W and W^c are finite-memory-determined in one-player infinite games, then W and W^c are finite-memory-determined in two-player infinite games.

Corollary

Lifting theorem

If W and W^c are finite-memory-determined in one-player infinite games, then W and W^c are finite-memory-determined in two-player infinite games.

Very powerful and extremely useful in practice

- Easier to analyse the one-player case (graph reasoning)
- Lift to two-player games via the theorem

• Mean-payoff ≥ 0 is not ω -regular (even though it is memoryless determined in finite games)

- Mean-payoff ≥ 0 is not ω -regular (even though it is memoryless determined in finite games)
- Some discounted objectives are ω -regular: The set of infinite words over $C = \{-2, -1, 0, 1, 2\}$ satisfying $\mathsf{DS}_{\frac{1}{2}}^{\geq 0}$ is the set of infinite words accepted by the DBA below:

- Mean-payoff ≥ 0 is not ω -regular (even though it is memoryless determined in finite games)
- Some discounted objectives are ω -regular: The set of infinite words over $C = \{-2, -1, 0, 1, 2\}$ satisfying $\mathsf{DS}_{\frac{1}{2}}^{\geq 0}$ is the set of infinite words accepted by the DBA below:

Infinite games

Infinite games

• Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games = ω -regular

Infinite games

- Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games = ω -regular
- One-to-two-player lift

(requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)

Infinite games

- Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games = ω -regular
- One-to-two-player lift (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)
- Further questions:
 - Different results when assuming finite branching?

Going further?

▶ So far, nice general characterizations

So far, nice general characterizations

- However:
 - Memory bounds are not tight in general
 - Makes assumptions on the memory for the two players

So far, nice general characterizations

- However:
 - Memory bounds are not tight in general
 - Makes assumptions on the memory for the two players
- \rightarrow Precise memory of the two players for ω -regular objectives? (we will see it is non-trivial in general)

$$W = (b^*a)^\omega \cup C^*aaC^\omega$$

$$W = (b^*a)^\omega \cup C^*aaC^\omega$$

- Smallest DPA \mathscr{A}_W recognizing W
- The prefix classifier \mathcal{M}_W has the same structure

$$W = (b^*a)^\omega \cup C^*aaC^\omega$$

- Smallest DPA \mathscr{A}_W recognizing W
- The prefix classifier \mathcal{M}_W has the same structure

 ${\scriptstyle \bullet}$ The two players can play optimally with a memory structure based on ${\mathscr A}_W$

$$W = (b^*a)^\omega \cup C^*aaC^\omega$$

- Smallest DPA \mathscr{A}_W recognizing W
- The prefix classifier \mathcal{M}_W has the same structure

 ${\scriptstyle \bullet}$ The two players can play optimally with a memory structure based on ${\mathscr A}_W$

The memory required stands between one state (memoryless) and three states, for both players

$$W = (b^*a)^\omega \cup C^*aaC^\omega$$

- Smallest DPA \mathscr{A}_W recognizing W
- The prefix classifier \mathcal{M}_W has the same structure

- ullet The two players can play optimally with a memory structure based on \mathscr{A}_W
- The memory required stands between one state (memoryless) and three states, for both players
 - W is half-positional: P_1 requires only memoryless strategies to win W

$$W = (b^*a)^\omega \cup C^*aaC^\omega$$

- Smallest DPA \mathscr{A}_W recognizing W
- The prefix classifier \mathcal{M}_W has the same structure

- ullet The two players can play optimally with a memory structure based on \mathscr{A}_W
- The memory required stands between one state (memoryless) and three states, for both players
 - W is half-positional: P_1 requires only memoryless strategies to win W
 - P_2 requires just two states of memory: q_ϵ and q_a

The example of Muller conditions

• $\mathcal{F} \subseteq 2^C$ $W_{\mathcal{F}} = \{ w \in C^{\omega} \mid \{ c \in C \mid \exists^{\infty} i \text{ s.t. } w_i = c \} \in \mathcal{F} \}$

[Cas22] Casares. On the minimisation of transition-based Rabin automata and the chromatic memory requirements of Muller condition (CSL'22)

The example of Muller conditions

• $\mathscr{F} \subseteq 2^C$ $W_{\mathscr{F}} = \{ w \in C^{\omega} \mid \{ c \in C \mid \exists^{\infty} i \text{ s.t. } w_i = c \} \in \mathscr{F} \}$

Chromatic memory for $W_{\mathscr{F}}$

A memory structure \mathscr{M} suffices for P_1 for $W_{\mathscr{F}}$ if and only if $W_{\mathscr{F}}$ is recognized by a deterministic Rabin automaton built on top of \mathscr{M} [Cas22]. It is NP-complete to decide whether there is a memory structure of size k that is sufficient to win a Muller condition.

[Cas22] Casares. On the minimisation of transition-based Rabin automata and the chromatic memory requirements of Muller condition (CSL'22)

• W given by a DBA (= Deterministic Büchi automaton)

- W given by a DBA (= Deterministic Büchi automaton)
- Only their half-positionality has been fully characterized

- W given by a DBA (= Deterministic Büchi automaton)
- Only their half-positionality has been fully characterized

Half-positionality of W can be decided in PTIME

An objective W defined by a DBA is half-positional if and only if:

- 1. W is monotone;
- 2. W is progress consistent: if w_2 is a progress after w_1 , then $w_1 w_2^{\omega}$ is winning;
- 3. W is recognized by a DBA built on top of its prefix classifier

Regular safety and reachability objectives [BFRV22]

W = avoid the rightmost state

Regular safety and reachability objectives [BFRV22]

W = avoid the rightmost state
Regular safety and reachability objectives [BFRV22]

W = avoid the rightmost state

Regular safety and reachability objectives [BFRV22]

W = avoid the rightmost state

It is NP-complete to decide whether there is a memory structure of size k that is sufficient to win a regular safety/reachability objective.

Double lift

• Let $W \subseteq C^{\omega}$ be a regular reachability or safety objective

Double lift

• Let $W \subseteq C^{\omega}$ be a regular reachability or safety objective

The double-lift theorem

If \mathcal{M} suffices to win for W in finite P_1 -arenas, then \mathcal{M} suffices to win for W for P_1 in (infinite) two-player arenas.

Double lift

• Let $W \subseteq C^{\omega}$ be a regular reachability or safety objective

The double-lift theorem

If \mathcal{M} suffices to win for W in finite P_1 -arenas, then \mathcal{M} suffices to win for W for P_1 in (infinite) two-player arenas.

Very powerful and extremely useful in practice

- Easy to analyse the one-player finite case (finite graph reasoning)
- Lift to infinite two-player games via the theorem

What about chaotic memory?

- Chaotic memory is more difficult to grasp
- In the previous example, only two memory states are sufficient (size of the largest antichain) [CFH14]

Conclusion

Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use **low memory**!
 - ... even though low memory does not mean it is easy...

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use **low memory**!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives
- Many one-to-two-player lifts

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives
- Many one-to-two-player lifts
- Fine tune the memory requirements for ω -regular objectives
 - Preliminary results, but no general understanding
 - Half-positionality

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives
- Many one-to-two-player lifts
- Fine tune the memory requirements for ω -regular objectives
 - Preliminary results, but no general understanding
 - Half-positionality
- Chaotic memory
 - Link with goof-for-game automata [CCL22]
 - Universal graphs [Ohl22]

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives
- Many one-to-two-player lifts
- Fine tune the memory requirements for ω -regular objectives
 - Preliminary results, but no general understanding
 - Half-positionality
- Chaotic memory
 - Link with goof-for-game automata [CCL22]
 - Universal graphs [Ohl22]

Quite active area of research

[CCL22] Casares, Colcombet, Lehtinen.On the size of good-for-game Rabin automata and its link with the memory in Muller games (ICALP'22)

[Ohl22] Ohlmann. Characterizing positionality in games of infinite duration over infinite graphs (LICS'22)